CHEM 103: Chemistry in Context

Unit 2.3
Solution Chemistry
(ionic solutions, acids & bases)

Water as a Solvent

Mineral: a naturally occurring element or compound with (usually) a definite chemical composition, and a crystalline structure formed as a result of geological processes

Water is a polar molecule, it is adept at dissolving charged species...

Minerals/salts do not dissolve the same way as sugars and organic molecules do...

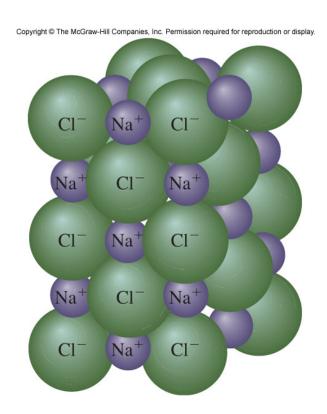
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 5.1	Mineral Composition of Tap Water, mg/L		
calcium	66	sulfates	42
magnesium	24	chlorides	48
sodium	18	nitrates	6
		fluorides	1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 5.2	Mineral Composition of Evian, mg/L		
calcium	78	bicarbonates	357
magnesium	24	sulfates	10
silica	14	chlorides	4
		nitrates	1

Fort Collins Water, mg/L


Ca ²⁺ , calcium	16.6	SO ₄ ²⁻ , sulfate	12.7 (250)
Mg ²⁺ , magnesium	1.7	NO ₃ -, nitrate	<0.0002 (0.001)
Na⁺, sodium	2.8	F ⁻ , fluoride	0.99 (4)
Cl ⁻ , chloride	2.4	(#) = max contaminant level (MCL	

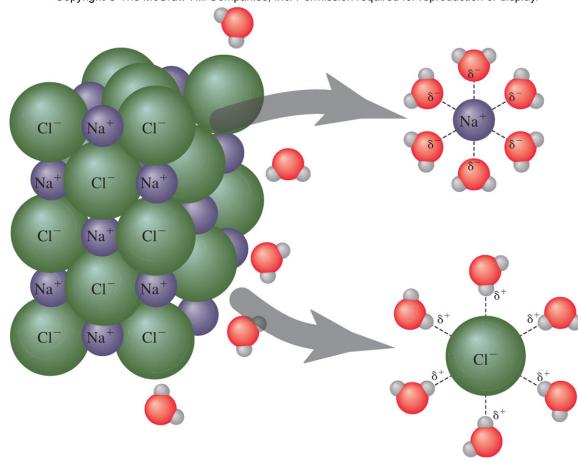

Aqueous Solutions of Ionic Compounds

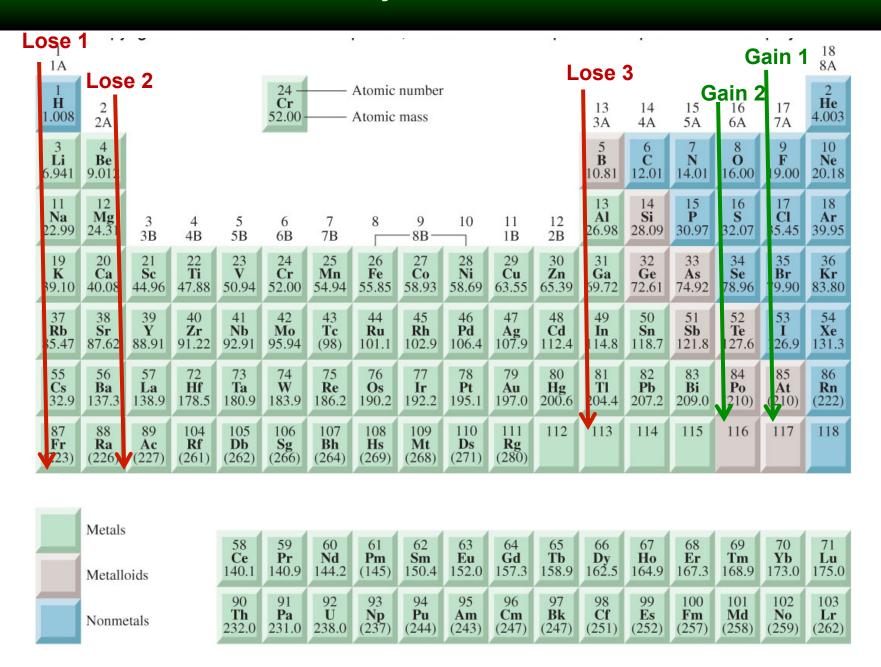
Table salt, aka sodium chloride (NaCl) alternating Na⁺ and Cl⁻ ions form an **ionic compound**

Both "ends" of water participate in dissolving salt:

$$H_2O$$

NaCl(s) \rightarrow Na⁺(aq) + Cl⁻(aq)

Ion Formation


(Some) elements can achieve noble gas configuration by losing or gaining electrons

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 5.4	Electronic Bookkeeping for Cation Formation		
Sodium Atom	Sodium Ion	Neon Atom	
Na	Na ⁺	Ne	
11 protons	11 protons	10 protons	
11 electrons	10 electrons	10 electrons	
Net charge: zero	Net charge: 1+	Net charge: zero	

Table 5.5	Electronic Bookkeeping for Anion Formation		
Chlorine Atom	Chloride Ion	Argon Atom	
Cl	Cl ⁻	Ar	
17 protons	17 protons	18 protons	
17 electrons	18 electrons	18 electrons	
Net charge: zero	<i>Net</i> charge: 1 –	Net charge: zero	

Periodicity of Ion Formation

Common Polyatomic Anions

Some ions made up of several atoms:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 5.6	Common Polyatomic Ions			
Name	Formula	Name	Formula	
acetate	$C_2H_3O_2^-$	nitrite	NO_2^-	
bicarbonate*	HCO ₃	phosphate	PO_4^{3-}	
carbonate	CO_3^{2-}	sulfate	SO_4^{2-}	
hydroxide	OH^-	sulfite	SO_3^{2-}	
hypochlorite	ClO ⁻	ammonium	$\mathrm{NH_4}^+$	
nitrate	NO_3^-			

^{*}Also called the hydrogen carbonate ion.

Formulas for ionic compounds balance charge (add up to zero):

Table 5.7	Formulas of Ionic Compounds with Polyatomic Ions			
Chemical Formula	$Al_2(SO_4)_3$	$(NH_4)_2S$	AlPO ₄	NH ₄ Cl
Cation(s) Anion(s)	$Al^{3+} Al^{3+}$ $SO_4^{2-} SO_4^{2-} SO_4^{2-}$	NH ₄ ⁺ NH ₄ ⁺ S ²⁻	Al ³⁺ PO ₄ ³⁻	NH ₄ ⁺ Cl ⁻

Understanding Charge in Ionic Compounds

- Elements/groups with low EN tend to form cations; elements/groups with high EN tend to form anions
- For ionic compounds, remember that the overall compound has to be neutral—i.e. the total charges have to balance
- Examples

- Table salt: NaCl = Na
$$^+$$
 + Cl $^-$

- Calcium sulfate:
$$CaSO_4 = Ca^{2+} + (SO_4)^{2-}$$

- Iron(III) oxide (aka rust):
$$Fe_2O_3 = 2Fe^{3+} + 3O^{2-}$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Tabl	e 5.3		Electronegativity Values, Arranged by Group Number				
1A	2A	3A	4A	5A	6A	7A	8A
Н							Не
2.1							_
Li	Be	В	C	N	O	F	Ne
1.0	1.5	2.0	2.5	3.0	3.5	4.0	_
Na	Mg	Al	Si	P	S	C1	Ar
0.9	1.2	1.5	1.8	2.1	2.5	3.0	_

(Aqueous) Solutions: Concentration Units

Important concentration units:

% (parts per hundred)

ppm:
$$1 \text{ ppm} = \frac{1 \text{ g solute}}{1 \times 10^6 \text{ g water}} \times \frac{1000 \text{ mg solute}}{1 \text{ g solute}} \times \frac{1000 \text{ g water}}{1 \text{ L water}} = \frac{1 \text{ mg solute}}{1 \text{ L water}}$$

ppb:
$$1 \text{ ppb} = \frac{1 \text{ g solute}}{1 \times 10^9 \text{ g water}} \times \frac{1 \times 10^6 \ \mu \text{g solute}}{1 \text{ g solute}} \times \frac{1000 \text{ g water}}{1 \text{ L water}} = \frac{1 \ \mu \text{g solute}}{1 \text{ L water}}$$

Molarity (M):
$$Molarity = \frac{moles \text{ of solute}}{L \text{ of solution}}$$

Mass / Mole

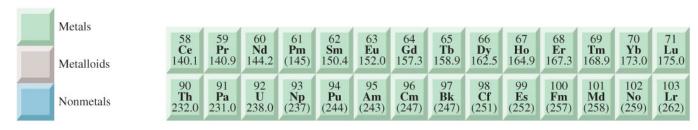
How many atoms are in 12 grams of C-12? Need to use *unit conversion* (*factor-label method*) to get the answer:

1 amu =
$$1.66 \times 10^{-24}$$
 g
1 atom C-12 = 12 amu
$$\frac{1 \text{ amu}}{1.66 \times 10^{-24} \text{g}} \text{ or } \frac{1.66 \times 10^{-24} \text{g}}{1 \text{ amu}}$$

$$\frac{1 \text{ atom C-12}}{12 \text{ amu}} \text{ or } \frac{12 \text{ amu}}{1 \text{ atom C-12}}$$

12 g C-12 ×
$$\frac{1 \text{ amu}}{1.66 \text{x} 10^{-24} \text{g}}$$
 × $\frac{1 \text{ atom C-12}}{12 \text{ amu}}$ = 6.02x10²³ atoms C-12
Avogadro's number

$$6.02x10^{23}$$
 eggs = 1 **mole** eggs


The Periodic Table (mass numbers)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Elements are arranged in order of atomic number (# of protons) & in columns (groups) based on chemical properties

Note: the #s below the chemical symbols are atomic masses

The 1–18 group designation has been recommended by the International Union of Pure and Applied Chemistry (IUPAC) but is not yet in wide use. In this text we use the standard U.S. notation for group numbers (1A–8A and 1B–8B). No name has been assigned for element 112. Elements 113–118 have not yet been synthesized.

$C + O_2 \rightarrow CO_2$

The following statements are consistent with the chemical equation above:

1 atom Carbon reacts with 1 molecule Oxygen to form 1 molecule carbon dioxide
12 atoms Carbon react with 12 molecules Oxygen to form 12 molecules carbon dioxide
1 dozen Carbon atoms react with 1 dozen Oxygen molecules to form 1 dozen carbon dioxide molecules
6.02x10²³ Carbon atoms react with 6.02x10²³ Oxygen molecules to form 6.02x10²³ carbon dioxide molecules
1 mole Carbon atoms react with 1 mole Oxygen molecules to form 1 mole carbon dioxide molecules

How many grams of CO₂ are formed from 10 g of Carbon?

1 mole (mol) Carbon = 12.01 g
1 mol Oxygen (O₂) = 2 mol Oxygen atoms
1 mol Oxygen (O₂) = 2x16.00 g = 32.00 g
1 mol CO₂ = 1 mol C + 2 mol O
=
$$\left(1 \text{ mol C} \times \frac{12.01 \text{ g C}}{1 \text{ mol C}}\right) + \left(2 \text{ mol O} \times \frac{16.00 \text{ g O}}{1 \text{ mol O}}\right)$$

= 12.01 g C + 32.0 g O
1 mol CO₂ = 44.01 g CO₂

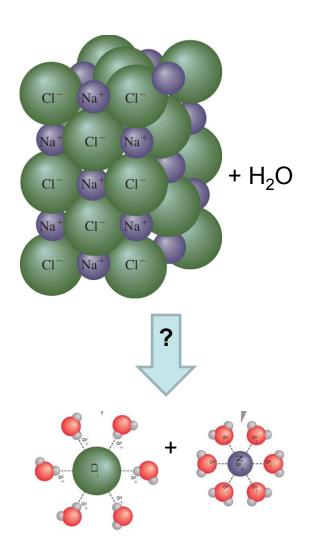
12 g Carbon reacts with 32 g Oxygen to form 44 g carbon dioxide

The C-to-CO₂ ratio in CO₂ is
$$\frac{12.01 \text{ g C}}{44.01 \text{ g CO}_2}$$

100.0 g
$$CO_2 \times \frac{12.01 \text{ g C}}{44.01 \text{ g CO}_2} = 27.29 \text{ g C}$$

the mass % of C in CO₂ is 27.29%

10 g Carbon
$$\times \frac{1 \text{ mole Carbon}}{12.01 \text{ g Carbon}} \times \frac{1 \text{ mole CO}_2}{1 \text{ mole Carbon}} \times \frac{44.01 \text{ g CO}_2}{1 \text{ mole CO}_2} = 37 \text{ g CO}_2$$


Molarity (M)

$$Molarity = \frac{moles \text{ of solute}}{L \text{ of solution}}$$

The McGraw-Hill Companies, Inc. Permission required for reproduction **1.** Add 1.00 mol (58.5 g) NaCl to empty 1.000 L flask. **2.** Add water until flask is about half full. Swirl to mix water and NaCl. Volumetric **3.** Add water until flask liquid level is even with 1000 mL 1000 mL mark. 4. Stopper and mix well. 1.00 M NaCl solution

Solubility of Ionic Compounds in Water

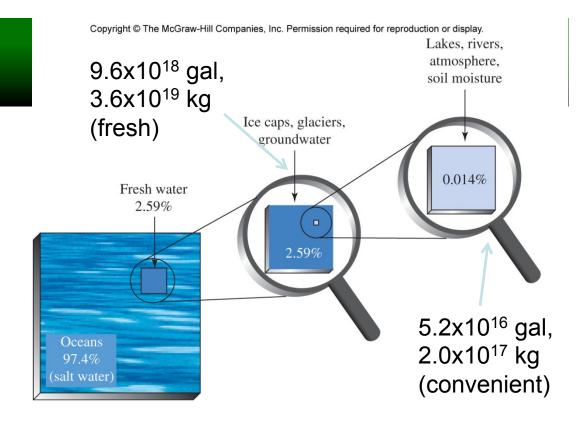
Competition: electrostatics in the ionic crystal versus interactions with a large number of water molecules...

Table 5.8	Water Solubility of Ionic Compounds			
Ions	Solubility of Compounds	Solubility Exceptions	Examples	
sodium, potassium, and ammonium	All soluble	None	NaNO ₃ is soluble KBr is soluble	
nitrates	All soluble	None	LiNO ₃ is soluble Mg(NO ₃) ₂ is soluble	
chlorides	Most soluble	Silver and some mercury chlorides	MgCl ₂ is soluble AgCl is insoluble	
sulfates	Most soluble	Strontium, barium, and lead sulfate	K ₂ SO ₄ is soluble BaSO ₄ is insoluble	
carbonates	Mostly insoluble*	Group IA and NH ₄ ⁺ carbonates are soluble	Na ₂ CO ₃ is soluble CaCO ₃ is insoluble	
hydroxides and sulfides	Mostly insoluble*	Group IA and NH ₄ ⁺ hydroxides and sulfides are soluble	KOH is soluble Al(OH) ₃ is insoluble	

^{*}Insoluble means that the compounds have extremely low solubilities in water (less than 0.01 M). All ionic compounds have at least a very small solubility in water.

Table 5.9	Environmen	Environmental Consequences of Solubility		
Source	Ions	Solubility and Consequences		
Salt deposits	sodium and potassium halides*	These salts are soluble. Over time, they dissolve from the land and wash into the sea. Thus, oceans are salty and sea water cannot be used for drinking without expensive purification.		
Agricultural fertilizers	nitrates	All nitrates are soluble. The runoff from fertilized fields carries nitrates into surface and groundwater. Nitrates are toxic, especially for infants.		
Metal ores	sulfides and oxides	Most sulfides and oxides are insoluble. Minerals containing iron, copper, and zinc are often sulfides and oxides. If these minerals had been soluble in water, they would have washed out to sea long ago.		
Mining waste	mercury, lead	Most mercury and lead compounds are classed as insoluble. However, they are leached slowly from waste piles into rivers and lakes where they contaminate water supplies.		

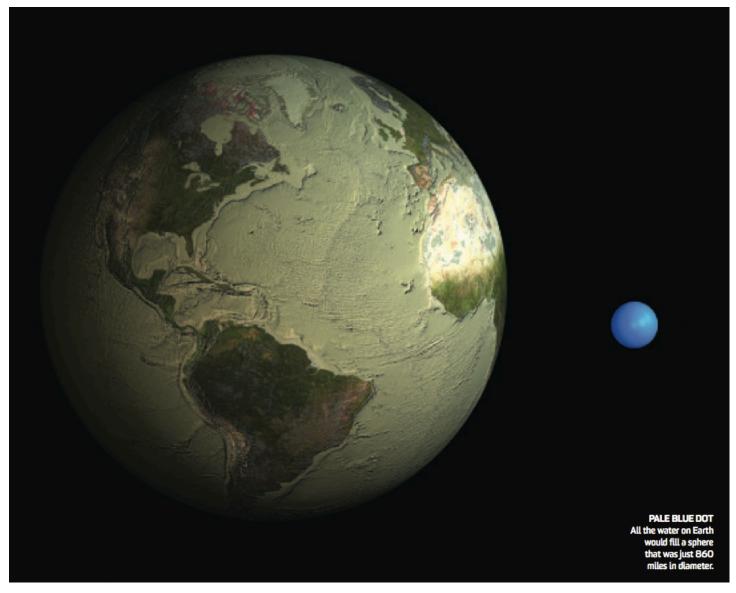
^{*}Halides are the anions in Group 7A, such as Cl^- and I^- .


(Drinking) Water Sources

How much water is there in the world?

3.7x10²⁰ gallons, 1.4x10²¹ kg

Ogallala Aquifer



Surface water: lakes, rivers, reservoirs drinking H₂O source for most major cities Ground water: aquifers drinking H₂O source for most rural areas

US water usage (10⁹ gallons/day) in 2000:

194 thermal electric power, 137 irrigation 43 domestic, 19 industrial, 14 miscellaneous

World's Water

Elizabeth Royte POPULAR SCIENCE July 2012, p52-53

The 750Gt Carbon in the atmosphere would fill a sphere ½ mile in diameter as a liquid⁶

Protecting our Drinking Water

Maximum contaminant level goal (MCLG):

maximum level of a contaminant in drinking water at which there is no known adverse effect on humans

Maximum contaminant level (MCL):

sets the legal limit for concentration of a contaminant

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 5.10 MCLGs and MCLs (in ppm) for Drinking Water

Pollutant	MCLG	MCL
cadmium (Cd ²⁺)	0.005	0.005
chromium (Cr ³⁺ , CrO ₄ ²⁻)	0.1	0.1
lead (Pb ²⁺)	0	0.015
mercury (Hg ²⁺)	0.002	0.002
nitrate (NO ₃ ⁻)	10	10
benzene (C_6H_6)	0	0.005
trihalomethanes (CHCl ₃ , etc.)	0	0.080

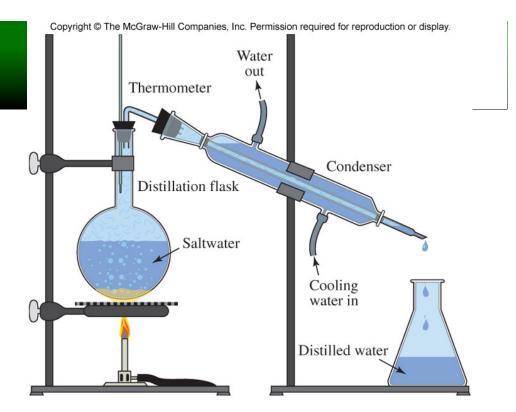
Desalination

Most (~98%) water is salt water. Water can be **desalinated** by **reverse osmosis** or **distillation** (but both require energy)

Saltwater in

High-pressure pump

Reverse osmosis chamber


Concentrated brine out

Membrane

Pure water out

osmosis: tendency for a

osmosis: tendency for a solvent to move from higher solvent concentration to lower solvent concentration (why you can't live on seawater)

0.31 kJ/g to heat H₂O from 25°C to 100°C
2.26 kJ/g to boil H₂O
How much energy to distill 1 gallon of H₂O? (need to break H-bonds)

1 gallon ×
$$\frac{3.785 \text{ L}}{1 \text{ gallon}}$$
 × $\frac{1000 \text{ g}}{1 \text{ L}}$ × $\frac{2.57 \text{kJ}}{1 \text{ g}}$ = $9.7 \times 10^3 \text{kJ}$

43x109 gal/day for domestic use (USA)

$$43x10^9$$
 gallons/day $\times \frac{9.7x10^3 \text{kJ}}{1 \text{ gallon}} \times \frac{365 \text{days}}{1 \text{ year}} = 1.52x10^{15} \text{kJ/year}$

=1.52 EJ/year (the total US annual energy use is 100 EJ/year)