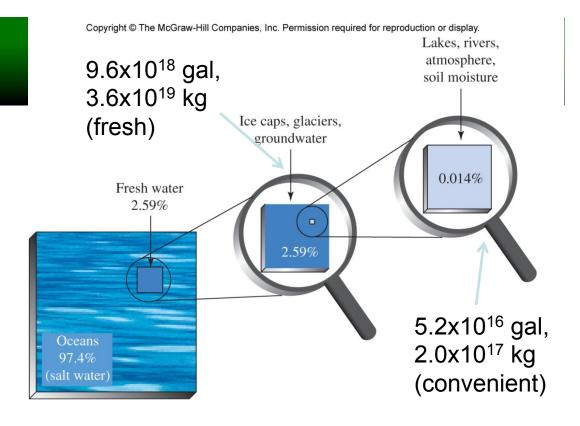
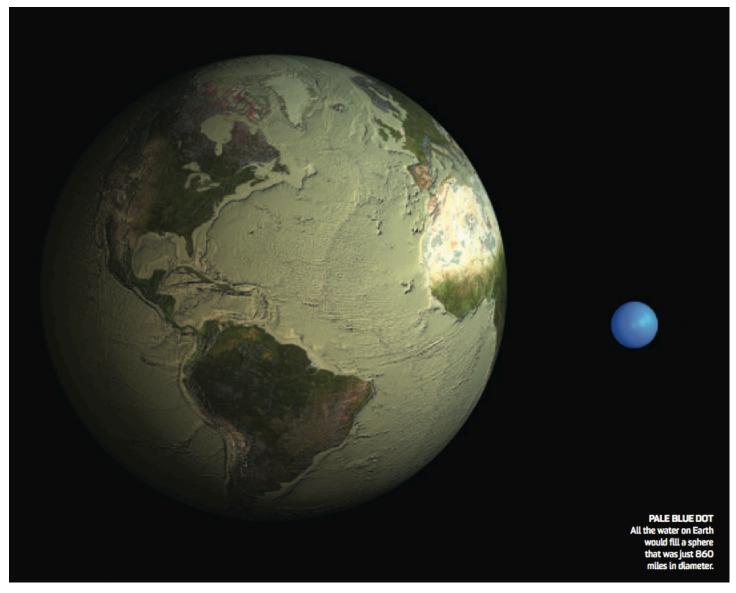

(Drinking) Water Sources


How much water is there in the world?

3.7x10²⁰ gallons, 1.4x10²¹ kg

Ogallala Aquifer


194 thermal electric power, 137 irrigation
43 domestic, 19 industrial, 14 miscellaneous

Surface water: lakes, rivers, reservoirs drinking H₂O source for most major cities Ground water: aquifers drinking H₂O source for most rural areas

US water usage (10⁹ gallons/day) in 2000:

World's Water

Elizabeth Royte POPULAR SCIENCE July 2012, p52-53

The 750Gt Carbon in the atmosphere would fill a sphere ½ mile in diameter as a liquid⁶

Protecting our Drinking Water

Maximum contaminant level goal (MCLG):

maximum level of a contaminant in drinking water at which there is no known adverse effect on humans

Maximum contaminant level (MCL):

sets the legal limit for concentration of a contaminant

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 5.10 MCLGs and MCLs (in ppm) for Drinking Water

Pollutant	MCLG	MCL
cadmium (Cd ²⁺)	0.005	0.005
chromium (Cr ³⁺ , CrO ₄ ²⁻)	0.1	0.1
lead (Pb ²⁺)	0	0.015
mercury (Hg ²⁺)	0.002	0.002
nitrate (NO ₃ ⁻)	10	10
benzene (C_6H_6)	0	0.005
trihalomethanes (CHCl ₃ , etc.)	0	0.080

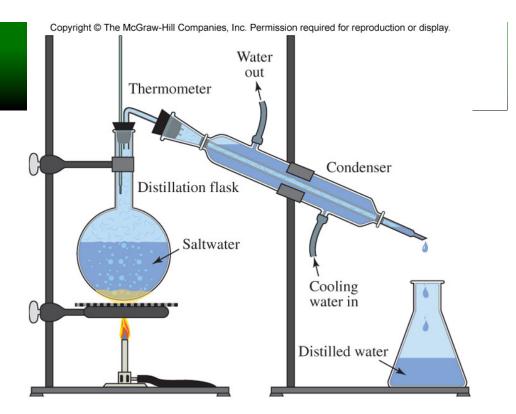
Desalination

Most (~98%) water is salt water. Water can be **desalinated** by **reverse osmosis** or **distillation** (but both require energy)

Saltwater in

High-pressure pump

Reverse osmosis chamber


Concentrated brine out

Membrane

Pure water out

osmosis: tendency for a

osmosis: tendency for a solvent to move from higher solvent concentration to lower solvent concentration (why you can't live on seawater)

0.31 kJ/g to heat H₂O from 25°C to 100°C
2.26 kJ/g to boil H₂O
How much energy to distill 1 gallon of H₂O? (need to break H-bonds)

1 gallon
$$\times \frac{3.785 \text{ L}}{1 \text{ gallon}} \times \frac{1000 \text{ g}}{1 \text{ L}} \times \frac{2.57 \text{kJ}}{1 \text{ g}} = 9.7 \times 10^3 \text{kJ}$$

43x109 gal/day for domestic use (USA)

$$43x10^9$$
 gallons/day $\times \frac{9.7x10^3 \text{kJ}}{1 \text{ gallon}} \times \frac{365 \text{days}}{1 \text{ year}} = 1.52x10^{15} \text{kJ/year}$

=1.52 EJ/year (the total US annual energy use is 100 EJ/year)