Energy Intro

How do we access chemical energy?

Carry out chemical transformations which change the types (and strengths of) chemical bonds

Why do combustion reactions give off energy?

X-O bonds tend to be stronger than X-X and O-O bonds

Order wood, Coal, Natural Gas (methane), gasoline (C₈H₁₈), and ethanol in terms of energy content (per gram) using Table 4.3

CH₄> gasoline>coal~ethanol>wood

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 4.3	Energy Content	t of Fuels	
So	urce	kJ/g	
Ну	drogen	140	
Me	ethane	56	
Pro	pane	51	
Ga	soline	48	
Co	al (hard)	31	
Eth	nanol	30	
Wo	ood (oak)	14	

Question

For bonds between the following pairs of atoms, in which **one** would you expect the 2nd atom of the pair to gain electrons?

- a) C and N
- b) O and Cl
- c) Be and Na
- d) Cl and S

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 5.3 Electronegativity Values, Arranged by Group Number										
1A	2A	3A	4A	5A	6A	7A	8A			
Н							Не			
2.1							_			
Li	Be	В	C	N	O	F	Ne			
1.0	1.5	2.0	2.5	3.0	3.5	4.0	_			
Na	Mg	Al	Si	P	S	Cl	Ar			
0.9	1.2	1.5	1.8	2.1	2.5	3.0	_			

Bond Energy Calcs

Is the reaction of nitrogen with hydrogen to form ammonia exothermic?

$$N_2 + 3H_2 \rightarrow 2NH_3$$

If – exothermic

If + endothermic

+946 kJ/mol+3x436 kJ/mol-2x3x391 kJ/mol=-92 kJ/mol

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

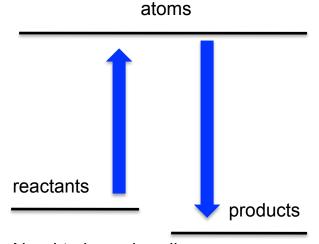
ato	ms								
1									
reactants	products								
Need to know bonding (Dot diagrams/#bonds)									

Table	4.2	Bo	nd Ene	ergies (in					
	Н	C	N	O	S	F	Cl	Br	I
Single I	Bonds								
Н	436								
C	416	356							
N	391	285	160						
O	467	336	201	146					
S	347	272	_	_	226				
F	566	485	272	190	326	158			
Cl	431	327	193	205	255	255	242		
Br	366	285	_	234	213	_	217	193	
I	299	213	—	201	_	_	209	180	151
Multiple	e Bonds								
$C = \hat{C}$	598			C=N	616		C=O	803 ii	n CO ₂
C≡C	813			$C \equiv N$	866		C≡O	1073	
N=N	418			0=0	498				
$N \equiv N$	946								

Source: Data from Darrell D. Ebbing, General Chemistry, Fourth Edition, 1993 Houghton Mifflin Co. Data originally from Inorganic Chemistry: Principles of Structure and Reactivity, Third Edition, by James E. Huheey, 1983, Addison Wesley Longman.

Bond Energy calcs, cont.

Is the reaction of diimide with hydrogen to form ammonia exothermic?


$$N_2H_2 + 2H_2 \rightarrow 2NH_3$$

+418 kJ/mol+2x391 kJ/mol+2x436 kJ/mol-2x3x391 kJ/mol=-274 kJ/mol

What about hydrazine?

$$N_2H_4 + H_2 \rightarrow 2NH_3$$

+160 kJ/mol+4x391 kJ/mol+436 kJ/mol -2x3x391 kJ/mol=-622 kJ/mol

Need to know bonding (Dot diagrams/#bonds)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table	4.2	Bo	Bond Energies (in kJ/mol)									
	Н	C	N	O	S	F	Cl	Br	I			
Single Bonds												
Н	436											
C	416	356										
N	391	285	160									
O	467	336	201	146								
S	347	272	_	_	226							
F	566	485	272	190	326	158						
Cl	431	327	193	205	255	255	242					
Br	366	285	_	234	213	_	217	193				
I	299	213	_	201		_	209	180	151			
Multiple	e Bonds											
C = C	598			C=N	616		C=O	803 ii	n CO ₂			
C≡C	813			$C \equiv N$	866		C≡O	1073				
N=N	418			0=0	498							
N≡N	946											

Source: Data from Darrell D. Ebbing, *General Chemistry*, Fourth Edition, 1993 Houghton Mifflin Co. Data originally from *Inorganic Chemistry: Principles of Structure and Reactivity*, Third Edition, by James E. Huheey, 1983, Addison Wesley Longman.

Energy content

Energy content of fuels

The text (p. 166) gives the equation for combusting glucose as giving off 2800 kJ, What is the energy content of glucose per gram?

2800 kJ
$$\times \frac{1 \text{ mole}}{180.18 \text{ g}} = 16 \text{ kJ/g}$$

6x12.01

+12x1.01

+6x16.00

=180.18 g/mol

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 4.3	Energy Content	of Fuels	
So	urce	kJ/g	
Ну	drogen	140	
Me	ethane	56	
Pro	opane	51	
Ga	soline	48	
Co	al (hard)	31	
Etl	nanol	30	
We	ood (oak)	14	

Unit 2.2 Summary

- Balancing chemical reactions leads to insight on pollution
 - e.g. complete vs incomplete combustion
 - e.g. catalytic conversion of CO to CO₂
- atomic structure and periodicity
 - composition of atoms: protons, neutrons, electrons
 - groups have the same number of valence electrons and similar properties
 - atomic reactivity based on achieving the same number of valence electrons as the noble gas in that atom's group
- Lewis (dot) structures
 - atoms make (covalent) bonds to satisfy the octet rule (most of the time)

- mass and the mole
 - mole is a counting unit, just like dozen...only a lot bigger: Avogadro's # is 6.02 x 10²³
 - use balanced chemical equations and unit analysis to determine things like the amount of carbon put into the atmosphere

Air Pollution

What's in air?
$$N_2$$
, O_2 , Ar, CO_2 , H_2O

What are the major pollutants that we talked about?

Where do/did they come from?

Combustion of natural gas, petroleum & coal

What's matter?

Mixtures/pure substances/elements/compounds

What have we/are we/can we do?

- 1. Drive less
- 2. Burn less (greater mpg)
- 3. Properly tuned engine
- 4. Catalytic converters (burns VOC, converts CO to CO₂, & helps with NO)
- 5. Use less energy

Balanced Chemical Equations

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table **1.8**

Characteristics of Chemical Equations

Always Conserved

Identity of atoms in reactants = Identity of atoms in products

Number of atoms in reactants = Number of atoms in products

Mass of all reactants = Mass of all products

May Change

Number of molecules in reactants vs. Number of molecules in products

Physical states (s, l, or g) of reactants vs. physical states of products

Ethanol (C₂H₆O) reacts with oxygen to form carbon dioxide and water Write the balanced chemical equation for this.

Atoms are made up of three elementary particles:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 2.1	Table 2.1 Properties of Subatomic Particles											
Particle	Relative Charge	Relative Mass	Actual Mass, kg									
proton	+1	1	1.67×10^{-27}									
neutron	0	1	1.67×10^{-27}									
electron	-1	0*	9.11×10^{-31}									

Protons & neutrons are in the nucleus (small and dense)

& electrons take up most of the space of atoms but are very light

& difficult to describe

Atoms have same # of protons as electrons (zero net charge)

How many protons/electrons are in an atom of Si? 14

What is the element with 17 protons? Cl

The Periodic Table

1A																	8A
1 H 1.008	2 2A				24 — Cr 52.00 -		Atomic n					13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.003
3 Li 6.941	4 Be 9.012	Be									5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18	
11 Na 22.99	12 Mg 24.31	3 3B	4 4B	5 5B	6 6B	7 7B	8	- 8B -	10	11 1B	12 2B	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 C1 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Te (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (269)	109 Mt (268)	110 Ds (271)	111	112	113	114	115	(116)	(117) X	(118)
	Metals																
				58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm (145)	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0
	Metalloi	ds					93	94	95	96	97			_			
	Nonmet	als		90 Th 232.0	91 Pa 231.0	92 U 238.0	Np (237)	Pu (244)	Am (243)	Cm (247)	Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

Draw the Lewis structure for:

Br :Br As : Te:

Mg Mg Te : As

Si ·Śi

Lewis Dot diagrams

Basic procedure:

- 1. Determine # outer/valence electrons for each atom (chapter 2)
- 2. Arrange outer/valence electrons so each atom has noble gas configuration (chapter 2)
- 3. Electrons repel (but are attracted to protons) so want to be as far apart as possible (chapter 3)

4 pairs of electrons: tetrahedral

3 pairs of electrons: trigonal planar

2 pairs of electrons: linear

Methanol (CH₄O)

Acetic Acid (CH₃COOH)

Methyl amine (CH₃NH₂) Acetamide (CH₃CONH₂)

Molar mass, factor-label/unit conversions

What's the molar mass of:

N_2O	freon-12 (CF ₂ Cl ₂)	
2x14.01 +16.0 =44.02 g/mol	2x19.00 +2x35.45 +12.01	
ethanol (C H O)	=120.91 g/mol glucose ($C_6H_{12}O_6$)	water (H ₂ O)
2x12.01 +6x1.01	6x12.01 + 12x1.01	2x1.01 +16.00
+16.00 =46.08 g/mol	+6x16.00 =180.18 g/mol	=18.02 g/mol

The Periodic Table

1 H 1.008	2 2A	24 — Atomic number Cr 52.00 — Atomic mass									13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.003	
3 Li 6.941	4 Be 9.012	Be									5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18	
11 Na 22.99	12 Mg 24.31	3 3B	4 4B	5 5B	6 6B	7 7B	8	- 8B -	10	11 1B	12 2B	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 C1 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 1 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (269)	109 Mt (268)	110 Ds (271)	111	112	113	114	115	(116)	(117) X	(118)
	1																
	Metallo	ids		58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm (145)	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0
	Nonmet	als		90 Th 232.0	91 Pa 231.0	92 U 238.0	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

Water Solutions & Acids & Bases

- Concepts water
 - electronegativity → polar bonds → polar molecules (sometimes)
 - hydrogen bonding: effects on melting and boiling points; effects on solubility
 - ions and ionic compounds
 - anions (-)

Compounds neutral (no net charge)

cations (+)

so subscripts are chosen to have zero net charge

- polyatomic ions
- concentration terms
 - ppm = mg solute /L H₂O
 - ppb = μ g solute /L H₂O
 - molarity (M) = mol solute/L solution grams → moles
- Concepts Acids & Bases
 - definitions of acids and bases
 - acids produce hydronium ion [H₃O⁺] when dissolved in aqueous solutions
 - bases produce hydroxide ion [OH-] when dissolved in aqueous solutions
 - acid-base equilibria and neutralization
 - acid + base → salt + water
 - $[H_3O^+]$ * $[OH^-]$ = 1 x 10⁻¹⁴ (a constant)
 - definition of pH
 - pH = $-\log[H_3O^+]$ [H₃O⁺]=10^{-pH}

Where does our drinking water come from?

Surface water: lakes, rivers, reservoirs

Ground water: aquifers

How much water is there in the world?

3.7x10²⁰ gallons, 1.4x10²¹ kg

Lakes, rivers, atmosphere, soil moisture

What fraction of the world's water is available for use?

97.4% in oceans

2.59% fresh water

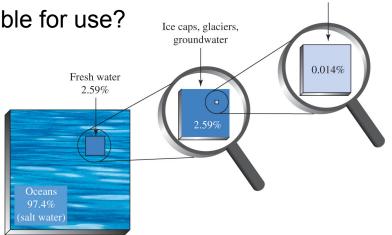
2% ice caps & glaciers

0.014% in lakes, rivers, and soil

5.2x10¹⁶ gallons, 2.0x10¹⁷ kg

How much do we use?

In 2000 US water usage (109 gallons/day):

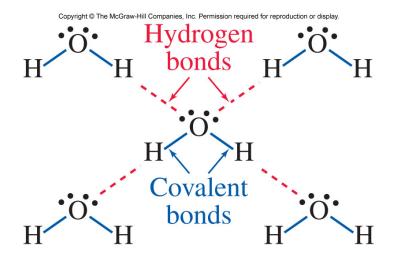

194 thermal electric power

137 irrigation

43 domestic

19 Industrial

14 Misc


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

What Physical Properties of Water did we talk about?

Bonds are polar (electronegativity)

Molecule is polar

Hydrogen bonding (~22 kJ/mol) (large heat capacity, why we use water for heating and cooling)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Tabl	Table 5.3 Electronegativity Values, Arranged by Group Number									
1A	2A	3A	4A	5A	6A	7A	8A			
Н							Не			
2.1							_			
Li	Be	В	C	N	O	F	Ne			
1.0	1.5	2.0	2.5	3.0	3.5	4.0	_			
Na	Mg	Al	Si	P	S	Cl	Ar			
0.9	1.2	1.5	1.8	2.1	2.5	3.0	_			

Molarity (M)

$$Molarity = \frac{moles of solute}{L of solution}$$

One reagent bottle on the shelf in a laboratory is labeled 12 M H₂SO₄ & another bottle on the shelf in a laboratory is labeled 12 M HCl.

How does the number of moles of H₂SO4 in 100 mL of 12 M H₂SO4 solution compare with the number of moles of HCl in 100 mL of 12 M HCl solution?

They are the same, 1.2 moles

How does the number of grams of H₂SO4 in 100 mL of 12 M H₂SO4 solution compare with the number of grams of HCl in 100 mL of 12 M HCl solution?

They are not the same, because the molar masses are different.

 H_2SO_4 : 2x1.0+32.1+4x16.0=98.1 g/mol→ 98.1g/molx1.2moles=117.7 g HCl: 1.0 +35.5=36.5 g/mol→ 36.5g/molx1.2moles=43.8 g

What do we know about lonic compounds?

form ions when dissolved in water have noble gas configurations (can use this to figure out charges & formulas)

What is the formula for calcium bromide?

$$Ca \rightarrow Ca^{2+}$$

Br \rightarrow Br $^ \rightarrow$ $CaBr_2$

What's the rule for solvation?

Like dissolves like Polar dissolves in polar, non-polar dissolves in non-polar

How can we purify salt water?

Distillation Reverse osmosis

Both take energy

What do we know about acids?

Acids are sour

Acids produce hydronium ion H₃O⁺ when dissolved in H₂O solution

Noble gas configuration maintained

Acids tend to produce the mono & polyatomic anions we talked about in chapter 5

What do we know about bases?

Bases are bitter

Bases produce hydroxide ion OH- when dissolved in H₂O solution

Bases tend to produce the mono & polyatomic cations we talked about in chapter 5

NaOH
$$\rightarrow$$
 Na⁺(aq) + OH⁻(aq)

$$NH_3(aq) + H_2O \rightarrow NH_4^+(aq) + OH^-(aq)$$

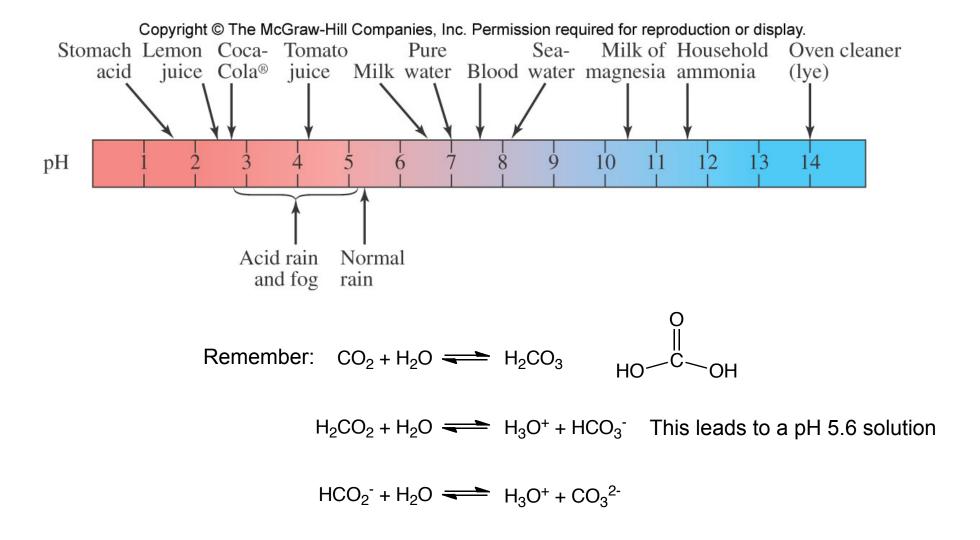
What is neutralization?

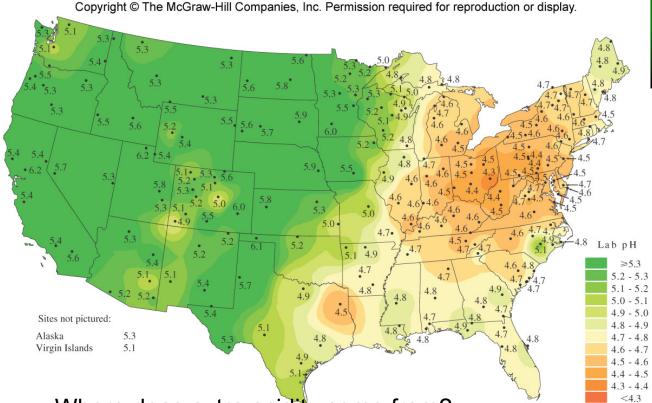
An acid reacting with a base to make a solution where $[H_3O^+]=[OH^-]$

$$[H_3O^+][OH^-]=1x10^{-14}$$
 at 25°C

In a neutral solution $[H_3O^+]=[OH^-]=1x10^{-7}$

```
if [H_3O^+]>[OH^-] acidic solution if [H_3O^+]=1x10^{-6} then [OH^-]=1x10^{-8} acidic if [H_3O^+]<[OH^-] basic solution if [H_3O^+]=1x10^{-11} then [OH^-]=1x10^{-3} basic
```


What's pH & why do we care?


```
pH stands for power of hydrogen
pH=-log[H<sub>3</sub>O<sup>+</sup>] (negative of the power of 10)
```

```
if [H_3O^+]=1x10^{-3} then pH=3
if [H_3O^+]=1x10^{-8} then pH=8
if [H_3O^+]=1x10^{-7} then pH=7
```

We care because acidic and basic solutions can catalyze the breakdown of biological as well as non-biological compounds We saw proteins & fats (cell membranes) We also saw marble (CaCO₃) and iron (forms rust)

Is rain normally acidic?

Where does extra acidity come from?

coal
$$2C_{135}H_{96}O_9NS + 313O_2 \rightarrow 270CO_2 + 96H_2O + 2NO_2 + 2SO_2$$

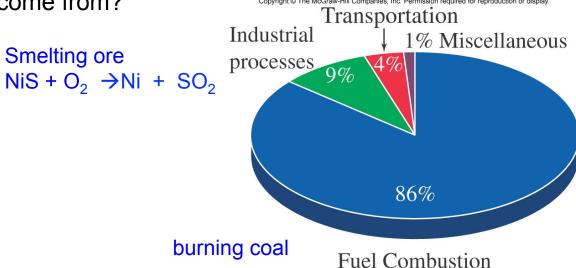
In atmosphere: $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$

$$SO_3(g) + H_2O(I) \rightarrow H_2SO_4(aq)$$
 Sulfuric acid

$$H_2SO_4(aq) + H_2O(I) \rightarrow H_3O^+(aq) + HSO_4^-(aq)$$

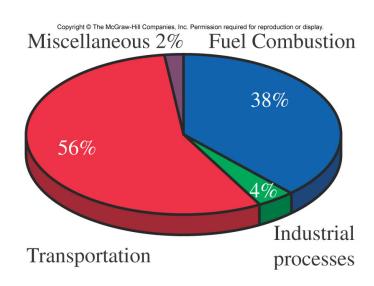
 $HSO_4^-(aq) + H_2O(I) \rightarrow H_3O^+(aq) + SO_4^{2-}(aq)$
hydrogen sulfate ion

sulfate ion


NO₂ formed when any combustion occurs (from N₂ in air)

$$4NO_2(g) + 2H_2O(I) + O_2(g) \rightarrow 4HNO_3(aq)$$
 Nitric acid

$$HNO_3(aq) + H_2O(I) \rightarrow H_3O^+(aq) + NO_3^-(aq)$$
 nitrate ion


Where does most of the SO₂ come from?

Burning coal (86%) Smelting ore (9%)

Where does most of the NO₂ come from?

Transportation (56%) Burning coal (38%)

